FreeTextSearch
 
search Change language (Se den danske version af denne side)
 
 
 

Lung function discordance in monozygotic twins and associated differences in blood DNA methylation

Bolund ACS, Starnawska A, Miller MR, et al. Lung function discordance in monozygotic twins and associated differences in blood DNA methylation. Clinical Epigenetics 2017;9:132
Date: 2017
Scientific Article
[Open access]Background: Lung function is an important predictor of morbidity and mortality, with accelerated lung function decline reported to have immense consequences for the world's healthcare systems. The lung function decline across individual's lifetime is a consequence of age-related changes in lung anatomical structure and combination of various environmental factors; however, the exact molecular mechanisms contributing to this decline are not fully understood. DNA methylation is an epigenetic modification that changes across individual's lifetime, as well as allows for interplay between environmental and genetic factors. DNA methylation plays a crucial role in regulation of gene expression, with increasing evidence linking aberrant DNA methylation levels with a number of common human diseases. In this study, we investigated possible associations between genome-wide DNA methylation levels and lung function in 169 pairs of middle-aged monozygotic twins (86 male pairs: mean age (min-max) = 66 years (57-79); 83 female pairs: mean age (min-max) = 66 years (56-78)). The twins were collected from the Danish Twin Registry and were examined at baseline (1998-1999) and follow-up (2008-2011) visits. Using the twin design, we correlated intra-pair differences in cross-sectional and longitudinal lung function with intra-pair blood DNA methylation differences at follow-up by linear regression analyses adjusted for sex, age, BMI, smoking, and blood cell composition measured for each individual with the use of flow cytometry. Results: We identified several differentially methylated CpG sites associated with forced expiratory volume the first second (FEV1) and forced vital capacity (FVC). Three probes identified for level of FVC were located in GLIPR1L2 gene (lowest p value = 7.14 x 10-8), involved in innate immunity and tumour-suppressor/pro-oncogenic mechanisms. Change in FEV1 during the 11-year follow-up period was associated with blood DNA methylation level in TRIM27 g
Link: http://dx.doi.org/10.1186/s13148-017-0427-2
Orders:
31.12.2017
 
Updated  31.12.2017
Contact: NRCWE web editors
 
Social media buzz on this scientific article

Click the badge for more information on mentions and sharings

The Altmetric service registers social media mentions and sharings of references to scholarly papers, provided the references point to the paper in a recognizable form (publisher's abstract page, DOI-links etc.). The service displays results from selected social media platforms.

If a "?" is displayed within the badge, no mentions or shares have been registered so far.

 
 
 

National Research Centre for the Working Environment | Lersø Parkallé 105 | DK-2100 Copenhagen O | Denmark |

Phone +45 3916 5200 | fax +45 3916 5201 | e-mail: nfa@arbejdsmiljoforskning.dk | CVR: 15413700 | EAN: 5798000399518

Vis desktop version
|WEBSITET ANVENDER COOKIES TIL AT HUSKE DIG OG DINE INDSTILLINGER.| Læs mere her